DIFFERENTIATION

1 A curve has the equation

$$
\begin{equation*}
3 x^{2}+x y-y^{2}+9=0 . \tag{5}
\end{equation*}
$$

Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
2 A curve has parametric equations

$$
x=a \cos \theta, \quad y=a(\sin \theta-\theta), \quad 0 \leq \theta<\pi,
$$

where a is a positive constant.
a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\tan \frac{\theta}{2}$.
b Find, in terms of a, an equation for the tangent to the curve at the point where it crosses the y-axis.

3

The diagram shows the curve with parametric equations

$$
\begin{equation*}
x=\cos \theta, \quad y=\frac{1}{2} \sin 2 \theta, \quad 0 \leq \theta<2 \pi . \tag{3}
\end{equation*}
$$

a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ.
b Find the two values of θ for which the curve passes through the origin.
c Show that the two tangents to the curve at the origin are perpendicular to each other.
d Find a cartesian equation for the curve.
4 A curve has the equation

$$
\begin{equation*}
x^{2}-4 x y+y^{2}=24 \text {. } \tag{4}
\end{equation*}
$$

a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-2 y}{2 x-y}$.
b Find an equation for the tangent to the curve at the point $P(2,10)$.
The tangent to the curve at Q is parallel to the tangent at P.
c Find the coordinates of Q.
5 A curve is given by the parametric equations

$$
x=t^{2}+2, \quad y=t(t-1) .
$$

a Find the coordinates of any points on the curve where the tangent to the curve is parallel to the x-axis.
b Show that the tangent to the curve at the point $(3,2)$ has the equation

$$
\begin{equation*}
3 x-2 y=5 \tag{5}
\end{equation*}
$$

6 Find an equation for the normal to the curve with equation

$$
x^{3}-3 x+x y-2 y^{2}+3=0
$$

at the point $(1,1)$.
Give your answer in the form $y=m x+c$.
7

The diagram shows the cross-section of a vase. The volume of water in the vase, $V \mathrm{~cm}^{3}$, when the depth of water in the vase is $h \mathrm{~cm}$ is given by

$$
V=40 \pi\left(\mathrm{e}^{0.1 h}-1\right)
$$

The vase is initially empty and water is poured into it at a constant rate of $80 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
Find the rate at which the depth of water in the vase is increasing
a when $h=4$,
b after 5 seconds of pouring water in.
8 A curve is given by the parametric equations

$$
\begin{equation*}
x=\frac{t}{1+t}, \quad y=\frac{t}{1-t}, \quad t \neq \pm 1 \tag{4}
\end{equation*}
$$

a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{1+t}{1-t}\right)^{2}$.
b Show that the normal to the curve at the point P, where $t=\frac{1}{2}$, has the equation

$$
\begin{equation*}
3 x+27 y=28 \tag{4}
\end{equation*}
$$

The normal to the curve at P meets the curve again at the point Q.
c Find the exact value of the parameter t at Q.

9 A curve has the equation

$$
2 x+x^{2} y-y^{2}=0
$$

Find the coordinates of the point on the curve where the tangent is parallel to the x-axis.
10 A curve has parametric equations

$$
x=a \sec \theta, \quad y=2 a \tan \theta, \quad-\frac{\pi}{2} \leq \theta<\frac{\pi}{2},
$$

where a is a positive constant.
a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ.
b Show that the normal to the curve at the point where $\theta=\frac{\pi}{4}$ has the equation

$$
\begin{equation*}
x+2 \sqrt{2} y=5 \sqrt{2} a \tag{4}
\end{equation*}
$$

c Find a cartesian equation for the curve in the form $y^{2}=\mathrm{f}(x)$.

